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Throughout, we will assume Q is a given acyclic quiver, and we will work in the category
of representations of Q over a given base field k. In §1, we define E(M,N), the extensions
of M by N for two representations M,N , and define a binary operation on E(M,N). In
§2, we show that this operation makes E(M,N) an abelian group. In §3, we describe an
isomorphism of E(M,N) with Ext1(M,N).

1 Definition of E(M,N)

Much of this discussion of extensions parallels extensions in the category of groups or R-
modules. For some discussion of the R-module version, see Weibel’s Introduction to Homo-
logical Algebra [2].

Definition 1.1. Let M,N ∈ repQ. An extension ζ of M by N is a short exact sequence
of the form

0 N E M 0

Definition 1.2. Two extensions ζ, ζ ′ of M by N are equivalent if there is a commutative
diagram

0 N E M 0

0 N E ′ M 0

IdN φ IdM

Note that by the Five Lemma, any such φ is an isomorphism.

Definition 1.3. The group of extensions E(M,N) of M by N is the set of equivalence
classes of extensions of M by N . (We haven’t yet defined a group structure on this set, but
we will.)

Our first objective is to define an abelian group structure on E(M,N). Our second objective
is to show that E(M,N) ∼= Ext1(M,N) as abelian groups, after defining Ext1(M,N).

First, we define a binary operation on extensions. Then we will show that it is well
defined on equivalence classes of extensions.

Definition 1.4. Let M,N ∈ repQ, and let ζ, ζ ′ be the following extensions of M by N .
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ζ 0 N E M 0

ζ ′ 0 N E ′ M 0

f g

f ′ g′

Define

E ′′ = {(x, x′) ∈ E ⊕ E ′ : g(x) = g′(x′)}
D′′ = {(f(n),−f ′(n)) ∈ E ⊕ E ′ : n ∈ N}

Then define F = E ′′/D′′. Finally, the extension ζ + ζ ′ is defined to be

0 N F M 0
f ′′ g′′

where f ′′(n) =
(
f(n), 0

)
and g′′(x, x′) = g(x).

This addition is called the Baer sum, at least in the context of R-modules.

Lemma 1.1. The definition above makes sense. More specifically,

1. E ′′ and D′′ are representations of Q, and D′′ is a subrepresentation of E ′′.

2. f ′′ and g′′ are well defined and are morphisms in repQ.

3. The sequence involving F is exact.

Proof. (1) E ′′ is a representation of Q by Exercise 1.8 in [1]. D′′ is a subrepresentation of
E ⊕ E ′ by Exercise 1.9 in [1]. Also, D′′ ⊂ E ′′, since

g(f(n)) = 0 = g′(−f ′(n) ∀n ∈ N

(2) It is clear that f ′′ is well defined and is a morphism. We check that g′′ is well defined by
showing that it vanishes on D′′.

g′′(f(n),−f ′(n)) = gf(n) = 0

It is clear that g′′ is a morphism, since g is a morphism.
(3) We check that the sequence involving F is exact. First, we show injectivity of f ′′. If

n ∈ ker f ′′, then there exists n′ ∈ N such that

f ′′(n) = (f(n), 0) = (f(n′),−f ′(n′)) =⇒ 0 = −f ′(n′)

which implies n′ = 0 by injectivity of f ′. Then f(n′) = 0 so f(n) = 0 as well, so n = 0
by injectivity of f . Thus f ′′ is injective. Now we show g′′ is surjective. Let m ∈ M . By
surjectivity of g, g′, there exist x ∈ E, x′ ∈ E ′ so that g(x) = g′(x′) = m. Then

g′′(x, x′) = g(x) = m
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so g′′ is surjective. Finally, we show that ker g′′ = im f ′′. It is easy to see that im f ′′ ⊂ ker g′′,
since

g′′f ′′(n) = g′′(f(n), 0) = gf(n) = 0

We need to check that ker g′′ ⊂ im f ′′. Let (x, x′) ∈ ker g′′, so 0 = g(x) = g′(x′). By exactness
of ζ, ζ ′, x ∈ im f and x′ ∈ im f ′, so there exist n, n′ ∈ N such that f(n) = x and f ′(n′) = x′.
Then

f ′′(n+ n′) = (f(n+ n′), 0)

= (f(n) + f(n′), 0)

= (f(n) + f(n′), 0) + (f(−n′),−f ′(−n′))
= (f(n),−f ′(n′))
= (x, x′)

thus ker g′′ ⊂ im f ′′.

With this lemma in hand, we know that our addition is well defined on exact sequences.
Now we need to check that it induces a well defined addition on E(M,N).

Definition 1.5. Let [ζ], [ζ ′] be equivalence classes of extensions in E(M,N). We define
addition in E(M,N) by

[ζ] + [ζ ′] = [ζ + ζ ′]

Lemma 1.2. This addition on E(M,N) is well defined.

Proof. We need to show that if [γ] = [ζ] and [γ′] = [ζ ′], then [γ + γ′] = [ζ] + [ζ ′]. Let
ζ, ζ ′, γ, γ′, ζ + ζ ′, γ + γ′ be the following extensions.

ζ 0 N E M 0

ζ ′ 0 N E ′ M 0

ζ + ζ ′ 0 N F M 0

γ 0 N S M 0

γ′ 0 N S ′ M 0

γ + γ′ 0 N T M 0

f g

f ′ g′

f ′′ g′′

h j

h′ j′

h′′ j′′

where F = E ′′/D′′ and T = S ′′/R′′. Because [γ] = [ζ] and [γ′] = [ζ ′], there is are isomor-
phisms φ : E → S and φ′ : E ′ → S ′ making the following diagrams commute.

3



0 N E M 0

0 N S M 0

0 N E M 0

0 N S ′ M 0

Id

f

φ

g

Id

h j

Id

f

φ′

g

Id

h′ j′

Then we have an isomorphism φ⊕φ′ : E⊕E ′ → S⊕S ′ given by (x, x′) 7→ (φ(x), φ′(x′)). We
claim that φ⊕ φ′ induces an isomorphism F → T giving an equivalence [ζ + ζ ′] = [γ + γ′].

First, we claim that φ ⊕ φ′|E′′ : E ′′ → S ⊕ S ′ has image contained in S ′′. This follows
from the right side commutative squares. For (x, x′) ∈ E ′′, we have g(x) = g′(x′), so

φ⊕ φ′(x, x′) = (φ(x), φ′(x′)) ∈ S ′′ because jφ(x) = g(x) = g′(x′) = j′φ′(x′)

We also claim S ′′ is contained in the image. For (y, y′) ∈ S ′′, we have j(y) = j′(y′), so
(φ−1(y), (φ′)−1(y′)) ∈ E ′′ because gφ−1(y) = j(y) = j′(y′) = g′(φ′)−1(y′). Thus

φ⊕ φ′(φ−1(y), (φ′)−1(y′)) = (y, y′)

so S ′′ is the image. Now we claim that φ⊕φ′|D′′ : D′′ → S⊕S ′′ has image R′′. Containment
and surjection follow from left side commutative squares, as seen below.

φ⊕ φ′(f(n),−f ′(n)) = (φf(n),−φ′f ′(n)) = (h(n),−h′(n)) ∈ R′′

So φ ⊕ φ′ restricts to isomorphisms E ′′ → S ′′ and D′′ → R′′. Thus φ ⊕ φ′ induces an
isomorphism E ′′/D′′ → S ′′/R′′, that is, F → T , making the following diagram commute.

ζ + ζ ′ 0 N F M 0

γ + γ′ 0 N T M 0

Id

f ′′

φ⊕φ′

g′′

Id

h′′ j′′

Thus [ζ + ζ ′] = [γ + γ′].

2 Verifying Group Axioms

Proposition 2.1. E(M,N) is an abelian group with this addition.

We break this into several separate propositions, so that the reader can easily find the proof
of a particular property.

Proposition 2.2. The split extension is an additive identity in E(M,N).

Proof. First, we claim that the equivalence class of the sequence [α], depicted below,
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0 N N ⊕M M 0ι π

acts as an addtive identity in E(M,N). Let [ζ] ∈ E(M,N) with representative

0 N E M 0
f g

Then we set

E ′′ = {(e, (n,m)) ∈ E ⊕ (N ⊕M) : g(e) = π(n,m)}
= {(e, (n,m)) ∈ E ⊕ (N ⊕M) : g(e) = m}

D′′ = {(f(n),−ι(n)) ∈ E ⊕ (N ⊕M) : n ∈ N}
= {(f(n), (−n, 0)) ∈ E ⊕ (N ⊕M)}

F = E ′′/D′′

Then [ζ + α] is represented by

0 N F M 0
f ′′ g′′

where f ′′(n) = (f(n), (0, 0)) = (f(n), (0, 0)) and g′′(e, (n,m)) = g(e). We claim that [ζ+α] =
[ζ]. To show this equivalence, we exhibit an explicit equivalence of extensions. Define φ :

E → F by e 7→ (e, (0, g(e))) and ψ : F → E by
(
e, (n,m)

)
7→ e+ f(n). It is straightforward

to see that φ is well defined, maps into F , and is a morphism. We check that ψ is well
defined by checking that it vanishes on D′′.

ψ(f(n), (−n, 0)) = f(n) + f(−n) = 0

It is clear that ψ maps into E and is a morphism. Now we show that φ, ψ are inverse.

ψφ(e) = ψ(e, (0, g(e))) = e+ f(0) = e

φψ(e, (n,m)) = φ(e+ f(n)) = (e+ f(n), (0, g(e+ f(n))))

Finally, we check that the following diagram commutes.

0 N E M 0

0 N F M 0

Id

f

φ

g

Id

f ′′ g′′

φf(n) = (f(n), (0, 0)) = f ′′(n)

g′′φ(e) = g′′(e, (0, g(e))) = g(e)

Thus [ζ + α] = [ζ], so [α] is an identity in E(M,N).

Proposition 2.3. Addition in E(M,N) is associative.

Proof. Let ζi for i = 1, 2, 3 be extensions of M by N .

ζi 0 N Ei M 0
fi gi
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Let

Eij = {(xi, xj) ∈ Ei ⊕ Ej : gi(xi) = gj(xj)}
Dij = {(fi(n),−fj(n)) : n ∈ N}
Fij = Eij/Dij

and define fij : N → Fij by fij(n) = (fi(n), 0) and gij : Fij → M by gij(xi, xj) = gi(xi).
That is, ζi + ζj is represented by

0 N Fij M 0
fij gij

Then set

E(ij)k =
{

((xi, xj), xk) ∈ Fij ⊕ Ek : gij(xi, xj) = gk(xk)
}

D(ij)k = {(fij(n), fk(n)) : n ∈ N}
F(ij)k = E(ij)k/D(ij)k

Ei(jk) =
{

(xi, (xj, xk)) ∈ Ei ⊕ Fjk : gi(xi) = gjk(xj, xk)
}

Di(jk) = {(fi(n), fjk(n)) : n ∈ N}
Fi(jk) = Ei(jk)/Di(jk)

and let f(ij)k, g(ij)k and fi(jk), gi(jk) so that (ζi + ζj) + ζk and ζi + (ζj + ζk) are respectively
represented by

0 N F(ij)k M 0

0 N Fi(jk) M 0

f(ij)k g(ij)k

fi(jk) gi(jk)

We care about the case i = 1, j = 2, k = 3. We define Ψ : E(12)3 → E1(23) by

Ψ
(

(x1, x2), x3

)
=
(
x1, (x2, x3)

)
First, we need to check that this is well defined; for this it is sufficient to check that Ψ vanishes
on the zero element of E(12)3. We can represent the zero element of E(12)3 by ((0, 0), 0), which
clearly goes to the zero element of E1(23) under Ψ, so it is well defined.

We also need to check that the image is contained in E1(23). For
(

(x1, x2), x3

)
∈ E(12)3

we have g12(x1, x2) = g3(x3), so g1(x1) = g2(x2) = g3(x3) (because (x1, x2) ∈ E12). Thus
g1(x1) = g23(x2, x3), so the image is contained in E1(23) as desired.

Now we claim that Ψ maps D(12)3 to D1(23). For n ∈ N ,

Ψ (f12(n), f3(n)) = Ψ
(

(f1(n), 0), f3(n)
)

= Ψ
(

(0, f2(n)), f3(n)
)

=
(

0, (f2(n), f3(n)
)
∈ D1(23)

Thus Ψ induces a morphism F(12)3 → F1(23). Finally, we need to check that the following
diagram commutes.
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0 N F(ij)k M 0

0 N Fi(jk) M 0

Id

f(ij)k

Ψ

g(ij)k

Id

fi(jk) gi(jk)

Note that f(12)3(n) = (f12(n), 0) and f1(23)(n) =
(
f1(n), (0, 0)

)
and g(12)3

(
(x1, x2), x3

)
=

g12(x1, x2) = g1(x1) and g1(23)

(
x1, (x2, x3)

)
= g1(x1).

Ψf(12)3(n) = Ψ(f12(n), 0) = Ψ
(

(f1(n), 0), 0
)

=
(
f1(n), (0, 0)

)
= f1(23)(n)

g1(23)Ψ
(

(x1, x2), x3

)
= g1(23)

(
x1, (x2, x3)

)
= g1(x1) = g(12)3

(
(x1, x2), x3

)
Thus the diagram commutes and Ψ is an equivalence of extensions. (Note that by the Five
Lemma, we any morphism making this commute is an isomorphism.)

Proposition 2.4. If [ζ] ∈ E(M,N), there is an extension −ζ so that [ζ] + [−ζ] = [0].

Proof. Let ζ be the extension

0 N E M 0
f g

Then we have another extension, which we call −ζ,

0 N E M 0
−f g

We claim that [ζ] + [−ζ] = [0], that is, ζ + (−ζ) is equivalent to the split extension. Let’s
describe ζ + (−ζ). It is

0 N F M 0
f ′′ g′′

where

E ′′ = {(x, x′) ∈ E ⊕ E ′ : g(x) = g(x′)}
D′′ = {(f(n), f(n)) : n ∈ N}
F = E ′′/D′′

and f ′′(n) = (f(n), 0) and g′′(x, x′) = g(x) = g(x′). We define a morphism φ : N ⊕M → F
as follows. For m ∈ M , there exists x ∈ E so that g(x) = m by surjectivity of g. We define
φ(n,m) = (f(n) + x, x). We need to check that this is well defined. Suppose x, x′ are two
different lifts of m. Then x − x′ ∈ ker g, so there exists n ∈ N with f(n′) = x − x′, so for
n ∈ N , we have

(f(n) + x, x)− (f(n) + x′, x′) = (x− x′, x− x′) = (f(n′), f(n′)) ∈ D′′

which implies that f(n) + x, x) = (f(n) + x′, x′). Thus φ is well defined. We verify that the
diagram below commutes, and thus φ is an isomorphism, and we have [ζ + (−ζ)] = [0].
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0 N N ⊕M M 0

0 N F M 0

Id

ι

φ

π

Id

f ′′ g′′

φι(n) = φ(n, 0) = (f(n), 0) = f ′′(n)

g′′φ(n,m) = g′′(f(n) + x, x) = g(f(n) + x) = g(x) = m = π(m)

Proposition 2.5. Addition in E(M,N) is commutative.

Proof. Let ζi for i = 1, 2 be extensions of M by N .

ζi 0 N Ei M 0
fi gi

Let

Eij = {(xi, xj) ∈ Ei ⊕ Ej : gi(xi) = gj(xj)}
Dij = {(fi(n),−fj(n)) : n ∈ N}
Fij = Eij/Dij

and define fij : N → Fij by fij(n) = (fi(n), 0) and gij : Fij → M by gij(xi, xj) = gi(xi).
That is, ζi + ζj is represented by

0 N Fij M 0
fij gij

We have the obvious isomorphism Ψ : E12 → E21 given by (x1, x2) 7→ (x2, x1). Ψ restricts to
an isomorphism D12 → D21, because

Ψ
(
f1(n),−f2(n)

)
=
(
− f2(n), f1(n)

)
=
(
f2(−n),−f1(−n)

)
Thus Ψ induces an isomorphism F12 → F21, and we verify that the following diagram com-
mutes.

0 N F12 M 0

0 N F21 M 0

Id

f12

Ψ

g12

Id

f21 g21

Ψf12(n) = Ψ(f1(n), 0) = (0, f1(n)) = (0, f1(n)) + (f2(n),−f1(n)) = (f2(n), 0) = f21(n)

g21Ψ(x1, x2) = g21(x2, x1) = g2(x2) = g1(x1) = g12(x1, x2)

This completes the proof that E(M,N) is an abelian group.

8



3 Isomorphism E(M,N) ∼= Ext1(M,N)

Now that we know that E(M,N) is an abelian group, we can describe it’s relationship with
the functor Ext1. First we recall the definition of Ext1. Remember that every representation
of Q has a two-term projective resolution.

Definition 3.1. Let M ∈ repQ. Let

0 P1 P2 M 0
f g

be a projective resolution of M . Then for N ∈ repQ, we define Ext1(M,N) as the cokernel
of f ∗ in the following sequence.

0 Hom(M,N) Hom(P0, N) Hom(P1, N)
g∗ f∗

That is, Ext1(M,N) := Hom(P1, N)/ im f ∗. In particular, the following sequence is exact.

0 Hom(M,N) Hom(P0, N) Hom(P1, N) Ext1(M,N) 0
g∗ f∗

Note: It is not clear from this definition why Ext1(M,N) does not depend on the choice of
projective resolution. However, there are “standard” results in homological algebra that it
does not. That is, Ext1(M,N) depends on only M and N .

Note that Ext1(M,N) is a k-vector space, so it is also an abelian group. Now we will
show that it is isomorphic to E(M,N) as an abelian group.

Definition 3.2. Fix a projective resolution P of M .

0 P1 P0 M 0
f g

Let [ζ] ∈ E(M,N) with representative short exact sequnce ζ.

0 N E M 0s t

Since P0 is projective and t is surjective, there exists a : P0 → E making the following
diagram commute (by the universal property of projectives).

0 P1 P0 M 0

0 N E M 0

f g

a Id

s t

By commutativity of this diagram, taf = gf = 0, that is, af : P0 → ker t = im s. Since s :
N → im s is surjective and P1 is projective, again using the universal property of projectives,
there is b : P1 → N making the following diagram commute.

0 P1 P0 M 0

0 N E M 0

b

f g

a Id

s t
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Recall that Ext1(M,N) = Hom(P1, N)/ im f ∗, so b is a representative of some class b ∈
Ext1(M,N). We define ΦP : E(M,N)→ Ext1(M,N) by ΦP [ζ] = b.

To save space, we’ll just denote ΦP by Φ. There is some homological algebra behind the
scenes which says that the choice of P doesn’t really matter, but we won’t concern ourselves
with that.

Proposition 3.1. Φ is an isomorphism E(M,N)→ Ext1(M,N).

We prove the following four statements, in this order.

1. Φ does not depend on the choice of a and b.

2. If [ζ] = [ζ ′], then Φ[ζ] = Φ[ζ ′].

3. Φ is a group homomorphism.

4. Φ is bijective.

Proposition 3.2. Φ does not depend on the choice of a and b.

Proof. Suppose that when computing Φ[ζ], we choose a1 : P0 → E and b1 : P1 → E. Then
we recompute, and choose different morphisms a2 : P0 → E and b2 : P1 → E. We need to
verify that b1 = b2 in Ext1(M,N). That is, we need to show that b2 − b1 ∈ im f ∗.

0 P1 P0 M 0

ζ 0 N E M 0

b1 b2

f g

a1 a2 Id

s t

Since ta1 = ta2 = g, we have t(a2 − a1) = 0. Thus a2 − a1 : P0 → E has image contained
in ker t = im s. Then by projectivity of P0, there exists q : P0 → N making the following
diagram commute.

P0

N im s 0

q
a2−a1

s

Then
sqf = (a2 − a1)f = a2f − a1f = sb2 − sb1 = s(b2 − b1)

By injectivity of s, this implies qf = b2 − b1, that is, f ∗q = b2 − b1.

Proposition 3.3. If [ζ] = [ζ ′], then Φ[ζ] = Φ[ζ ′].

Proof. Let ζ, ζ ′ be two equivalent extensions of M by N (i.e. [ζ] = [ζ ′]).

ζ 0 N E M 0

ζ ′ 0 N E ′ M 0

Id

s t

θ Id

s′=θs t′=tθ−1
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Let a, a′ : P0 → E and b, b′ : P1 → N be the morphisms constructed for Φ[ζ] and Φ[ζ ′]
respectively.

0 P1 P0 M 0

ζ 0 N E M 0

b

f g

a Id

s t

By part (1), we can choose a′ to be any morphism making the following diagram commute.

P0

E ′ M 0

a′ g

t′=tθ−1

In particular, we can choose a′ = θa, since then the diagram commutes, as demonstrated by
the following calculation.

t′a′ = tθ−1θa = ta = g

(ta = g by the original diagram for ζ.) We can also choose b′ to be any morphism making
the following diagram commute.

P1

N im s′ 0

b′
a′f=θaf

s′=θs

In particular, we can choose b′ = b, since then the diagram commutes, as demonstrated by
the following calculation.

s′b′ = θsb = θaf

(sb = af by the original diagram for ζ.) Thus Φ[ζ] = b and Φ[ζ ′] = b.

Proposition 3.4. Φ is a group homomorphism.

Proof. Let [ζ], [ζ ′] ∈ E(M,N). We need to show that Φ[ζ + ζ ′] = Φ[ζ] + Φ[ζ ′]. Choose
representatives ζ, ζ ′.

ζ 0 N E M 0

ζ ′ 0 N E ′ M 0

s t

s′ t′

Then we let

E ′′ = {(x, x′) ∈ E ⊕ E ′ : t(x) = t′(x′)}
D′′ = {(s(n),−s′(n)) : n ∈ N}
F = E ′′/D′′

and we have a representative of ζ + ζ ′.
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ζ 0 N F M 0s′′ t′′

where s′′(n) = (s(n), 0) and t′′(x, x′) = t(x). Let a, a′ : P0 → E and b, b′ : P1 → N be
morphisms constructed to compute Φ[ζ],Φ[ζ ′] respectively.

P0 P0

E M 0 E ′ M 0

a g a′ g

t

0

t′

Then we define a′′ : P0 → F by a′′(p) = (a(p), a′(p)). Notice that this lies in F because
t′a′(p) = ta(p) = g(p) by the commutative triangles above. Then we have t′′a′′(p) = ta(p) =
g(p), so the following diagram also commutes.

P0

F M 0

a′′ g

t′′
0

By construction of b, b′, we also have commutative diagrams

P1 P1

N im s 0 N im s′ 0

b
af

b′
a′f

s
0

s′

Then we define b′′ = b+ b′, and we calculate

s′′b′′(p) = s′′(b(p) + b′(p)) = (sb(p) + sb′(p), 0) = (sb(p), s′b′(p)) = (af(p), a′f(p)) = a′′f(p)

so the following diagram commutes.

P1

N im s′′ 0

b′′
a′′f

s′′
0

Thus Φ[ζ + ζ ′] = b′′, by our proposition about the freedom to choose our a′′, b′′. Thus

Φ[ζ + ζ ′] = b′′ = b+ b′ = b+ b′ = Φ[ζ] + Φ[ζ ′]

Proposition 3.5. Φ is bijective.

Proof. We define an inverse mapping. Given b ∈ Ext1(M,N), choose any representative b,
which is a morphism P1 → N . Then let E be the pushout of b and f (see Exercise 1.9 of
Schiffer). Namely,

E = (P0 ⊕N)/{(f(x),−b(x)) : x ∈ P1}

By Exercise 1.9, we then have a commutative diagram with exact rows.
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0 P1 P0 M 0

0 N E M 0

b

f

a

g

Id

s t

where s(n) = (0, n) and a(p) = (p, 0) and t(p, n) = g(p). Then take [ζ] ∈ E(M,N) repre-
sented by the exact sequence on the bottom. This gives us an assignment Ψ : Ext1(M,N)→
E(M,N).

We need to check that this doesn’t depend on the choice of b. Suppose we have b1, b2 :
P1 → N with b1 = b2. Let Ei be the pushout of bi, f , with associated morphisms si, ti.

Ei = (P0 ⊕N)/{f(p),−bi(n)} si(n) = (0, n) ti(p, n) = g(p)

By definition, Ψ(b1) and Ψ(b2) are represented by the following exact sequences.

Ψ(b1) 0 N E1 M 0

Ψ(b2) 0 N E2 M 0

Id

s1 t1

Id

s2 t2

We need a morphism γ : E1 → E2 making the diagram above commute, so that [Ψ(b1)] =
[Ψ(b2)]. Because b1 = b2, we have b1 − b2 ∈ im f ∗, so there exists β : P0 → N with
f ∗β = βf = b1 − b2. Define γ : E1 → E2 by γ(p, n) = (p, n+ β(p). Note that γ is well
defined because it vanishes on {f(p),−b1(n)}, by the following calculation.

γ(f(x),−b1(x)) = (f(x),−b1(x) + βf(x)) = (f(x),−b2(x)) = 0

And by the following calculation, the required diagram commutes.

γs1(n) = γ(0, n) = (0, n+ β(0) = (0, n) = s2(n)

t2γ(p, n) = t2(p, n+ β(p) = g(p) = t1(p, n)

The result of all of this is that we have a well defined function Ψ : Ext1(M,N)→ E(M,N).
Finally, we claim that Ψ is an inverse to Φ. It is immediate from the definition of Ψ that
ΦΨ(b) = b. It remains to show that ΨΦ[ζ] = [ζ]. Let [ζ] have representative extension

0 N E M 0s t

then Φ[ζ] = b fits into the following commutative diagram.

0 P1 P0 M 0

0 N E M 0

b

f g

a Id

s t

Then ΨΦ[ζ] = Ψ(b) is the pushout of b and f .
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0 P1 P0 M 0

0 N E ′ M 0

b

f g

a′ Id

s′ t′

Where E ′ = (P0⊕N)/ ∼ and s′(n) = (0, n) and a′(p) = (p, 0) and t′(p, n) = g(p). We define
γ : P0 ⊕N → E by γ(p, n) = a(p) + s(n). Then

γ((f(x),−b(x)) = af(x)− sb(x) = 0

so γ induces a morphism E ′ → E by γ(p, n) = a(p) + s(n). Furthermore, we check that the
following diagram commutes, which makes γ an equivalence between [ζ] and ΨΦ[ζ].

0 N E ′ M 0

0 N E M 0

Id

s′ t′

γ Id

s t

γs′(n) = γ(0, n) = s(n)

tγ(p, n) = ta(p) + ts(n) = ta(p) = g(p) = t′(p, n)

Thus ΦΨ and ΨΦ are the respective identites, so Φ is a bijection.

This concludes the proof that Φ is an isomorphism of abelian groups.
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